Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.767
Filtrar
1.
Nature ; 625(7995): 593-602, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093017

RESUMO

Emerging data have shown that previously defined noncoding genomes might encode peptides that bind human leukocyte antigen (HLA) as cryptic antigens to stimulate adaptive immunity1,2. However, the significance and mechanisms of action of cryptic antigens in anti-tumour immunity remain unclear. Here mass spectrometry of the HLA class I (HLA-I) peptidome coupled with ribosome sequencing of human breast cancer samples identified HLA-I-binding cryptic antigenic peptides that were noncanonically translated by a tumour-specific circular RNA (circRNA): circFAM53B. The cryptic peptides efficiently primed naive CD4+ and CD8+ T cells in an antigen-specific manner and induced anti-tumour immunity. Clinically, the expression of circFAM53B and its encoded peptides was associated with substantial infiltration of antigen-specific CD8+ T cells and better survival in patients with breast cancer and patients with melanoma. Mechanistically, circFAM53B-encoded peptides had strong binding affinity to both HLA-I and HLA-II molecules. In vivo, administration of vaccines consisting of tumour-specific circRNA or its encoded peptides in mice bearing breast cancer tumours or melanoma induced enhanced infiltration of tumour-antigen-specific cytotoxic T cells, which led to effective tumour control. Overall, our findings reveal that noncanonical translation of circRNAs can drive efficient anti-tumour immunity, which suggests that vaccination exploiting tumour-specific circRNAs may serve as an immunotherapeutic strategy against malignant tumours.


Assuntos
Neoplasias da Mama , Melanoma , Peptídeos , Biossíntese de Proteínas , RNA Circular , Animais , Feminino , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Espectrometria de Massas , Melanoma/genética , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/patologia , Peptídeos/genética , Peptídeos/imunologia , Perfil de Ribossomos , RNA Circular/genética , RNA Circular/metabolismo , Análise de Sobrevida
2.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190011

RESUMO

Leishmaniasis is a parasitic disease caused by different species of Leishmania and transmitted through the bite of sand flies vector. Macrophages (MΦ), the target cells of Leishmania parasites, are phagocytes that play a crucial role in the innate immune microbial defense and are antigen-presenting cells driving the activation of the acquired immune response. Exploring parasite-host communication may be key in restraining parasite dissemination in the host. Extracellular vesicles (EVs) constitute a group of heterogenous cell-derived membranous structures, naturally produced by all cells and with immunomodulatory potential over target cells. This study examined the immunogenic potential of EVs shed by L. shawi and L. guyanensis in MΦ activation by analyzing the dynamics of major histocompatibility complex (MHC), innate immune receptors, and cytokine generation. L. shawi and L. guyanensis EVs were incorporated by MΦ and modulated innate immune receptors, indicating that EVs cargo can be recognized by MΦ sensors. Moreover, EVs induced MΦ to generate a mix of pro- and anti-inflammatory cytokines and favored the expression of MHCI molecules, suggesting that EVs antigens can be present to T cells, activating the acquired immune response of the host. Since nano-sized vesicles can be used as vehicles of immune mediators or immunomodulatory drugs, parasitic EVs can be exploited by bioengineering approaches for the development of efficient prophylactic or therapeutic tools for leishmaniasis.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Interações Hospedeiro-Patógeno , Imunomodulação , Leishmania guyanensis , Leishmania , Ativação de Macrófagos , Macrófagos , Leishmania guyanensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leishmania/imunologia , Animais , Camundongos , Linhagem Celular , Macrófagos/imunologia , Macrófagos/parasitologia , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/parasitologia , Exossomos/imunologia , Exossomos/parasitologia , Peptídeo Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Citocinas/metabolismo , Imunidade Inata
3.
J Immunol ; 210(5): 668-680, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695776

RESUMO

The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.


Assuntos
Doença de Marek , Animais , Alelos , Aminoácidos , Membrana Celular , Galinhas , Doença de Marek/genética , Antígenos de Histocompatibilidade Classe I/imunologia
4.
Nature ; 613(7945): 743-750, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631610

RESUMO

DNA mismatch repair-deficient (MMR-d) cancers present an abundance of neoantigens that is thought to explain their exceptional responsiveness to immune checkpoint blockade (ICB)1,2. Here, in contrast to other cancer types3-5, we observed that 20 out of 21 (95%) MMR-d cancers with genomic inactivation of ß2-microglobulin (encoded by B2M) retained responsiveness to ICB, suggesting the involvement of immune effector cells other than CD8+ T cells in this context. We next identified a strong association between B2M inactivation and increased infiltration by γδ T cells in MMR-d cancers. These γδ T cells mainly comprised the Vδ1 and Vδ3 subsets, and expressed high levels of PD-1, other activation markers, including cytotoxic molecules, and a broad repertoire of killer-cell immunoglobulin-like receptors. In vitro, PD-1+ γδ T cells that were isolated from MMR-d colon cancers exhibited enhanced reactivity to human leukocyte antigen (HLA)-class-I-negative MMR-d colon cancer cell lines and B2M-knockout patient-derived tumour organoids compared with antigen-presentation-proficient cells. By comparing paired tumour samples from patients with MMR-d colon cancer that were obtained before and after dual PD-1 and CTLA-4 blockade, we found that immune checkpoint blockade substantially increased the frequency of γδ T cells in B2M-deficient cancers. Taken together, these data indicate that γδ T cells contribute to the response to immune checkpoint blockade in patients with HLA-class-I-negative MMR-d colon cancers, and underline the potential of γδ T cells in cancer immunotherapy.


Assuntos
Neoplasias do Colo , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I , Inibidores de Checkpoint Imunológico , Imunoterapia , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Microglobulina beta-2/deficiência , Microglobulina beta-2/genética , Reparo de Erro de Pareamento de DNA/genética , Receptores KIR , Linhagem Celular Tumoral , Organoides , Apresentação de Antígeno , Genes MHC Classe I/genética
5.
Nature ; 613(7944): 565-574, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410718

RESUMO

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Assuntos
Desdiferenciação Celular , Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T , Timócitos , Animais , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Peptídeos/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timo/citologia , Timo/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo
6.
Adv Healthc Mater ; 12(4): e2202460, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366890

RESUMO

Currently, mRNA-based tumor therapies are in full flow because in vitro-transcribed (IVT) mRNA has the potential to express tumor antigens to initiate the adaptive immune responses. However, the efficacy of such therapy relies heavily on the delivery system. Here, a pardaxin-modified liposome loaded with tumor antigen-encoding mRNA and adjuvant (2',3'-cGAMP, (cyclic [G(2',5')pA(3',5')p])), termed P-Lipoplex-CDN is reported. Due to an nonlysosomal delivery route, the transfection efficiency on dendritic cells (DCs) is improved by reducing the lysosome disruption of cargos. The mRNA modified DCs efficiently induce tumor antigen-specific immune responses both in vitro and in vivo. As prophylactic vaccines, mRNA transfected DCs significantly delay the occurrence and development of tumors, and several immunized mice are even completely resistant to tumors. Interestingly, the efficacy depends on the major histocompatibility complex class I (MHC-I) expression level on tumor cells. Furthermore, epigenetic modification (decitabine, DAC) is applied as a combination strategy to deal with malignant tumor progression caused by deficient tumor MHC-I expression. This study highlights the close relationship between mRNA-DCs vaccine efficacy and the expression level of tumor cell MHC-I molecules. Moreover, a feasible strategy for tumor MHC-I expression deficiency is proposed, which may provide clinical guidance for the design and application of mRNA-based tumor therapies.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Neoplasias , Animais , Camundongos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Epigênese Genética , Antígenos de Histocompatibilidade Classe I/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/prevenção & controle , Neoplasias/terapia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transfecção , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , Vacinas de mRNA/uso terapêutico
7.
Proc Natl Acad Sci U S A ; 119(41): e2209042119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36136978

RESUMO

Viruses employ a variety of strategies to escape or counteract immune responses, including depletion of cell surface major histocompatibility complex class I (MHC-I), that would ordinarily present viral peptides to CD8+ cytotoxic T cells. As part of a screen to elucidate biological activities associated with individual severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral proteins, we found that ORF7a reduced cell surface MHC-I levels by approximately fivefold. Nevertheless, in cells infected with SARS-CoV-2, surface MHC-I levels were reduced even in the absence of ORF7a, suggesting additional mechanisms of MHC-I down-regulation. ORF7a proteins from a sample of sarbecoviruses varied in their ability to induce MHC-I down-regulation and, unlike SARS-CoV-2, the ORF7a protein from SARS-CoV lacked MHC-I downregulating activity. A single amino acid at position 59 (T/F) that is variable among sarbecovirus ORF7a proteins governed the difference in MHC-I downregulating activity. SARS-CoV-2 ORF7a physically associated with the MHC-I heavy chain and inhibited the presentation of expressed antigen to CD8+ T cells. Specifically, ORF7a prevented the assembly of the MHC-I peptide loading complex and caused retention of MHC-I in the endoplasmic reticulum. The differential ability of ORF7a proteins to function in this way might affect sarbecovirus dissemination and persistence in human populations, particularly those with infection- or vaccine-elicited immunity.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , COVID-19 , Antígenos de Histocompatibilidade Classe I , Proteínas Virais , Aminoácidos , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Complexo Principal de Histocompatibilidade , Peptídeos , SARS-CoV-2 , Proteínas Virais/imunologia
8.
Cancer Cell ; 40(9): 1060-1069.e7, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099883

RESUMO

Immunotargeting of tumor-specific antigens is a powerful therapeutic strategy. Immunotherapies directed at MHC-I complexes have expanded the scope of antigens and enabled the direct targeting of intracellular oncoproteins at the cell surface. We asked whether covalent drugs that alkylate mutated residues on oncoproteins could act as haptens to generate unique MHC-I-restricted neoantigens. Here, we report that KRAS G12C mutant cells treated with the covalent inhibitor ARS1620 present ARS1620-modified peptides in MHC-I complexes. Using ARS1620-specific antibodies identified by phage display, we show that these haptenated MHC-I complexes can serve as tumor-specific neoantigens and that a bispecific T cell engager construct based on a hapten-specific antibody elicits a cytotoxic T cell response against KRAS G12C cells, including those resistant to direct KRAS G12C inhibition. With multiple K-RAS G12C inhibitors in clinical use or undergoing clinical trials, our results present a strategy to enhance their efficacy and overcome the rapidly arising tumor resistance.


Assuntos
Antineoplásicos , Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Anticorpos , Antineoplásicos/farmacologia , Humanos , Fatores Imunológicos , Imunoterapia , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética
9.
Mem Inst Oswaldo Cruz ; 117: e210194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976280

RESUMO

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus associated with foetal malformations and neurological complications. The infection is usually associated with mild symptoms. The comparison between the allelic frequency of polymorphic genes in symptomatic infected individuals in the population can clarify the pathogenic mechanisms of ZIKV. During ZIKV infection, cytokines are produced and natural killer (NK) cells are recruited, whose activation depends on signaling pathways activated by specific receptors, such as killer cell immunoglobulin-like receptors (KIR). These molecules interact with human leukocyte antigen (HLA) class I ligands and are encoded by polymorphic genes. OBJECTIVES: This study aimed to evaluate the frequency of allelic variants of the genes encoding the KIR receptors and their HLA class I ligands in 139 symptomatic ZIKV-patients and 170 controls negative for the virus, and to evaluate the role of these variants for ZIKV susceptibility. METHODS: KIR and HLA class I genes were genotyped using the polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) technique. FINDINGS: No significant differences in the frequency distribution of KIRs and KIR-HLA in patients compared to controls were observed. MAIN CONCLUSIONS: KIR and its HLA ligands might play a minor role in ZIKV infection in the south and southeast Brazilian individuals.


Assuntos
Infecção por Zika virus , Zika virus , Brasil , Frequência do Gene/genética , Genótipo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ligantes , Receptores KIR/genética , Zika virus/genética , Infecção por Zika virus/genética
10.
Proc Natl Acad Sci U S A ; 119(29): e2205498119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858344

RESUMO

HLA class I (HLA-I) allotypes vary widely in their dependence on tapasin (TAPBP), an integral component of the peptide-loading complex, to present peptides on the cell surface. We identified two single-nucleotide polymorphisms that regulate TAPBP messenger RNA (mRNA) expression in Africans, rs111686073 (G/C) and rs59097151 (A/G), located in an AP-2α transcription factor binding site and a microRNA (miR)-4486 binding site, respectively. rs111686073G and rs59097151A induced significantly higher TAPBP mRNA expression relative to the alternative alleles due to higher affinity for AP-2α and abrogation of miR-4486 binding, respectively. These variants associated with lower Plasmodium falciparum parasite prevalence and lower incidence of clinical malaria specifically among individuals carrying tapasin-dependent HLA-I allotypes, presumably by augmenting peptide loading, whereas tapasin-independent allotypes associated with relative protection, regardless of imputed TAPBP mRNA expression levels. Thus, an attenuated course of malaria may occur through enhanced breadth and/or magnitude of antigen presentation, an important consideration when evaluating vaccine efficacy.


Assuntos
Antígenos de Histocompatibilidade Classe I , Malária Falciparum , Proteínas de Membrana Transportadoras , Plasmodium falciparum , Sítios de Ligação , Variação Genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , MicroRNAs/metabolismo , Peptídeos/imunologia , Plasmodium falciparum/imunologia , RNA Mensageiro/genética , Fator de Transcrição AP-2/metabolismo
11.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805975

RESUMO

The SARS-CoV-2 disease presents different phenotypes of severity. Comorbidities, age, and being overweight are well established risk factors for severe disease. However, innate immunity plays a key role in the early control of viral infections and may condition the gravity of COVID-19. Natural Killer (NK) cells are part of innate immunity and are important in the control of virus infection by killing infected cells and participating in the development of adaptive immunity. Therefore, we studied the short tandem repeat (STR) transmembrane polymorphisms of the major histocompatibility complex class I chain-related A (MICA), an NKG2D ligand that induces activation of NK cells, among other cells. We compared the alleles and genotypes of MICA in COVID-19 patients versus healthy controls and analyzed their relation to disease severity. Our results indicate that the MICA*A9 allele is related to infection as well as to symptomatic disease but not to severe disease. The MICA*A9 allele may be a risk factor for SARS-CoV-2 infection and symptomatic disease.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , COVID-19/genética , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Complexo Principal de Histocompatibilidade , Polimorfismo Genético , SARS-CoV-2/imunologia
12.
Nature ; 607(7917): 149-155, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35705813

RESUMO

Immunosurveillance of cancer requires the presentation of peptide antigens on major histocompatibility complex class I (MHC-I) molecules1-5. Current approaches to profiling of MHC-I-associated peptides, collectively known as the immunopeptidome, are limited to in vitro investigation or bulk tumour lysates, which limits our understanding of cancer-specific patterns of antigen presentation in vivo6. To overcome these limitations, we engineered an inducible affinity tag into the mouse MHC-I gene (H2-K1) and targeted this allele to the KrasLSL-G12D/+Trp53fl/fl mouse model (KP/KbStrep)7. This approach enabled us to precisely isolate MHC-I peptides from autochthonous pancreatic ductal adenocarcinoma and from lung adenocarcinoma (LUAD) in vivo. In addition, we profiled the LUAD immunopeptidome from the alveolar type 2 cell of origin up to late-stage disease. Differential peptide presentation in LUAD was not predictable by mRNA expression or translation efficiency and is probably driven by post-translational mechanisms. Vaccination with peptides presented by LUAD in vivo induced CD8+ T cell responses in naive mice and tumour-bearing mice. Many peptides specific to LUAD, including immunogenic peptides, exhibited minimal expression of the cognate mRNA, which prompts the reconsideration of antigen prediction pipelines that triage peptides according to transcript abundance8. Beyond cancer, the KbStrep allele is compatible with other Cre-driver lines to explore antigen presentation in vivo in the pursuit of understanding basic immunology, infectious disease and autoimmunity.


Assuntos
Antígenos de Neoplasias , Peptídeos , Proteômica , Células Epiteliais Alveolares/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias Pulmonares/química , Neoplasias Pulmonares/imunologia , Camundongos , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/imunologia , Peptídeos/análise , Peptídeos/química , Peptídeos/imunologia , RNA Mensageiro
13.
Mol Cancer Ther ; 21(7): 1219-1226, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545005

RESUMO

Not all genomic mutations are expressed at the transcript/protein level, which may explain variation in cancer development, prognosis, and treatment response/resistance. In this study, our aim was to describe the prevalence of somatic mutation loss of expression ('variant silencing') in a large collection of human samples, and the potential impact of such variant silencing on tumor immunogenicity. Whole-exome mutation description and tumor-normal paired mRNA expression data originating from 636 unique patients diagnosed with 21 distinct tumor types (all solid tumors) were retrieved from The Cancer Genome Atlas (TCGA). Antigenicity and immunogenicity of neopeptides originating from mutated proteins within a same tumor sample were predicted using the tools available from the Immune Epitope Database (IEDB). A total of 65,072 missense mutations were studied. We demonstrated that 9.06% (N = 10,604 silenced/117,505 total variants) somatic variants were silenced in human tumors. Transciptomic silencing is significantly associated with proteins presenting better peptide processing, MHC-I binding, and T-cell recognition; and is more likely observed in lymphocyte-depleted tumors. Silencing may participate in tumor resistance by clonal selection and immune evasion. In the era of precision medicine, we suggest that therapeutic choices should be informed by both the presence of a genomic mutation and its actual transcript expression.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias , Apresentação de Antígeno , Humanos , Mutação , Mutação de Sentido Incorreto , Neoplasias/genética , Prognóstico
14.
Hum Immunol ; 83(7): 547-550, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525710

RESUMO

In this population-based case-control study conducted in the Chelyabinsk region of Russia, we examined the distribution of HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1, in a group of 100 patients with confirmed COVID-19 bilateral pneumonia. Typing was performed by NGS and statistical calculations were carried out with the Arlequin program. HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 alleles were compared between patients with COVID-19 and 99 healthy controls. We identified that COVID-19 susceptibility is associated with alleles and genotypes rs9277534A (disequilibrium with HLA-DPB1*02:01, -02:02, -04:01, -04:02, -17:01 alleles) with low expression of protein products HLA-DPB1 (pc < 0.028) and homozygosity at HLA-C*04 (p = 0.024, pc = 0.312). Allele HLA-A*01:01 was decreased in a group of patients with severe forms of bilateral pneumonia, and therefore it may be considered as a protective factor for the development of severe symptoms of COVID-19 (p = 0.009, pc = 0.225). Our studies provide further evidence for the functional association between HLA genes and COVID-19.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Alelos , COVID-19/genética , COVID-19/imunologia , Estudos de Casos e Controles , Frequência do Gene , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/genética , Antígenos HLA-C/imunologia , Antígenos HLA-D/genética , Antígenos HLA-D/metabolismo , Haplótipos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos
15.
Hum Immunol ; 83(7): 556-563, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35570067

RESUMO

BACKGROUND: HLA-E binding to NKG2A/CD94 induces inhibitory signals that modulate NK cells cytotoxicity against infected targets. HCV-derived peptides stabilize HLA-E molecule that favours its higher expression. However, HLA-E stability and expression vary in different genotypes where the presence of HLA-E*01:03 allele is associated with higher HLA-E expression on targets that enhances NK cells inhibition and increases the chance of virus to escape from innate immune system. Here, we aimed to investigate whether HLA-E polymorphism affects HCV infection status or its treatment in major thalassemia patients who are more vulnerable to hepatitis C. METHODS AND MATERIALS: Study included 89 cases of major thalassemia positive for HCV-antibody; of those 17 patients were negative for HCV-PCR (spontaneously cleared) and 72 patients were HCV-PCR positive (persistent hepatitis under different anti-viral treatment). 16 major thalassemia patients without hepatitis, negative for HCV-antibody were also considered as patients control group. Genomic DNAs extracted from whole bloods were genotyped for HLA-E locus using a sequence specific primer-PCR strategy. RESULTS: In thalassemia patients, HLA-E*01:03 allele increased susceptibility to HCV infection [p = 0.02; 4.74(1.418-15.85)]. In addition, HLA-E*01:03/*01:03 genotype predicted more resistance to HCV treatment compared to other genotypes [p = 0.037; 3.5(1.1-11.4)]. In other words, we found that the presence of HLA-E*01:01 allele favors better response to anti-HCV therapy [p = 0.037; 3.5(1.1-11.4)]. CONCLUSION: From a mechanistic point of view, the associations between HLA-E polymorphisms and susceptibility to HCV infection or its therapeutic resistance in thalassemia patients may suggest potential roles for the innate and adaptive immune responses to this infection, which are manifested by the acts of HLA-E - NKG2A/CD94 axis in the modulation of NK cell inhibitory function as well as HLA-E associated CD8+ T cell cytolytic activity against HCV, respectively. Notably, from a clinical point of view, paying attention to these associations may not only be useful in increasing the effectiveness of current anti-HCV regimens comprising direct acting antivirals (DAAs) in more complicated patients, but may also suggest antiviral prophylaxis for patients more vulnerable to HCV infection.


Assuntos
Hepatite C Crônica , Hepatite C , Antígenos de Histocompatibilidade Classe I , Talassemia , Alelos , Antivirais/uso terapêutico , Transfusão de Sangue , Hepacivirus , Hepatite C/tratamento farmacológico , Hepatite C/genética , Hepatite C/imunologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Talassemia/tratamento farmacológico , Talassemia/genética , Talassemia/imunologia , Talassemia/terapia
16.
J Allergy Clin Immunol Pract ; 10(7): 1763-1775, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35561968

RESUMO

Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.


Assuntos
Evolução Molecular , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I , Fenômenos Imunogenéticos , Células Matadoras Naturais , Receptores KIR , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Saúde , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Fenômenos Imunogenéticos/genética , Células Matadoras Naturais/imunologia , Receptores KIR/genética , Receptores KIR/imunologia
17.
J Virol ; 96(7): e0015822, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35311551

RESUMO

Major histocompatibility complex class I (MHC-I) and MHC-II molecules, mainly being responsible for the processing and presentation of intracellular or extracellular antigen, respectively, are critical for antiviral immunity. Here, we reported that porcine deltacoronavirus (PDCoV) with the zoonotic potential and potential spillover from pigs to humans, upregulated the expressions of porcine MHC-I (swine leukocyte antigen class I, SLA-I) molecules and SLA-I antigen presentation associated genes instead of porcine MHC-II (SLA-II) molecules both in primary porcine enteroids and swine testicular (ST) cells at the late stage of infection, and this finding was verified in vivo. Moreover, the induction of SLA-I molecules by PDCoV infection was mediated through enhancing the expression of NOD-like receptor (NLR) family caspase recruitment domain-containing 5 (NLRC5). Mechanistic studies demonstrated that PDCoV infection robustly elevated retinoic acid-inducible gene I (RIG-I) expression, and further initiated the downstream type I interferon beta (IFN-ß) production, which led to the upregulation of NLRC5 and SLA-I genes. Likewise, interferon regulatory factor 1 (IRF1) elicited by PDCoV infection directly activated the promoter activity of NLRC5, resulting in an increased expression of NLRC5 and SLA-I upregulation. Taken together, our findings advance our understanding of how PDCoV manipulates MHC molecules, and knowledge that could help inform the development of therapies and vaccines against PDCoV. IMPORTANCE MHC-I molecules play a crucial role in antiviral immunity by presenting intracellular antigens to CD8+T lymphocytes and eliminating virus-infected cells by natural killer cells' "missing-self recognition." However, the manipulation of MHC molecules by coronaviruses remains poorly understood. Here, we demonstrated that PDCoV, a zoonotic potential coronavirus efficiently infecting cells from broad species, greatly increased the expressions of porcine MHC-I (SLA-I) molecules and MHC-I antigen presentation associated genes but not porcine MHC-II (SLA-II) molecules both in vitro and in vivo. Mechanistically, the upregulation of MHC-I molecules by PDCoV infection required the master transactivator of MHC-I, NLRC5, which was mediated not only by RIG-I-initiated type I IFN signaling pathway but also by IRF1 induced by PDCoV as it could activate NLRC5 promoter activity. These results provide significant insights into the modification of the MHC class I pathway and may provide a potential therapeutic intervention for PDCoV.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Antígenos de Histocompatibilidade Classe I , Animais , Infecções por Coronavirus/imunologia , Deltacoronavirus/imunologia , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Suínos
18.
Cell Rep ; 38(10): 110503, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235832

RESUMO

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Metiltransferases , Subfamília C de Receptores Semelhantes a Lectina de Células NK , RNA Helicases , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/imunologia , Metiltransferases/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , RNA Helicases/imunologia , Proteínas não Estruturais Virais/imunologia
19.
PLoS Comput Biol ; 18(2): e1009726, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143484

RESUMO

The massive assessment of immune evasion due to viral mutations that increase COVID-19 susceptibility can be computationally facilitated. The adaptive cytotoxic T response is critical during primary infection and the generation of long-term protection. Here, potential HLA class I epitopes in the SARS-CoV-2 proteome were predicted for 2,915 human alleles of 71 families using the netMHCIpan EL algorithm. Allele families showed extreme epitopic differences, underscoring genetic variability of protective capacity between humans. Up to 1,222 epitopes were associated with any of the twelve supertypes, that is, allele clusters covering 90% population. Next, from all mutations identified in ~118,000 viral NCBI isolates, those causing significant epitope score reduction were considered epitope escape mutations. These mutations mainly involved non-conservative substitutions at the second and C-terminal position of the ligand core, or total ligand removal by large recurrent deletions. Escape mutations affected 47% of supertype epitopes, which in 21% of cases concerned isolates from two or more sub-continental areas. Some of these changes were coupled, but never surpassed 15% of evaded epitopes for the same supertype in the same isolate, except for B27. In contrast to most supertypes, eight allele families mostly contained alleles with few SARS-CoV-2 ligands. Isolates harboring cytotoxic escape mutations for these families co-existed geographically within sub-Saharan and Asian populations enriched in these alleles according to the Allele Frequency Net Database. Collectively, our findings indicate that escape mutation events have already occurred for half of HLA class I supertype epitopes. However, it is presently unlikely that, overall, it poses a threat to the global population. In contrast, single and double mutations for susceptible alleles may be associated with viral selective pressure and alarming local outbreaks. The integration of genomic, geographical and immunoinformatic information eases the surveillance of variants potentially affecting the global population, as well as minority subpopulations.


Assuntos
COVID-19 , Genoma Viral , Evasão da Resposta Imune , Mutação , SARS-CoV-2 , COVID-19/imunologia , COVID-19/virologia , Epitopos/genética , Epitopos/imunologia , Frequência do Gene , Genoma Viral/genética , Genoma Viral/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Mutação/genética , Mutação/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
20.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35226074

RESUMO

The development of autoimmune diseases following SARS-CoV-2 infection, including multisystem inflammatory syndrome, has been reported, and several mechanisms have been suggested, including molecular mimicry. We developed a scalable, comparative immunoinformatics pipeline called cross-reactive-epitope-search-using-structural-properties-of-proteins (CRESSP) to identify cross-reactive epitopes between a collection of SARS-CoV-2 proteomes and the human proteome using the structural properties of the proteins. Overall, by searching 4 911 245 proteins from 196 352 SARS-CoV-2 genomes, we identified 133 and 648 human proteins harboring potential cross-reactive B-cell and CD8+ T-cell epitopes, respectively. To demonstrate the robustness of our pipeline, we predicted the cross-reactive epitopes of coronavirus spike proteins, which were recognized by known cross-neutralizing antibodies. Using single-cell expression data, we identified PARP14 as a potential target of intermolecular epitope spreading between the virus and human proteins. Finally, we developed a web application (https://ahs2202.github.io/3M/) to interactively visualize our results. We also made our pipeline available as an open-source CRESSP package (https://pypi.org/project/cressp/), which can analyze any two proteomes of interest to identify potentially cross-reactive epitopes between the proteomes. Overall, our immunoinformatic resources provide a foundation for the investigation of molecular mimicry in the pathogenesis of autoimmune and chronic inflammatory diseases following COVID-19.


Assuntos
Biologia Computacional/métodos , Epitopos/química , Epitopos/imunologia , SARS-CoV-2/imunologia , Software , Proteínas Virais/química , Proteínas Virais/imunologia , Algoritmos , Reações Cruzadas/imunologia , Epitopos de Linfócito B , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Modelos Moleculares , Mimetismo Molecular , Redes Neurais de Computação , Proteoma , Proteômica/métodos , Relação Estrutura-Atividade , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...